翻訳と辞書 |
optical flat : ウィキペディア英語版 | optical flat
An optical flat is an optical-grade piece of glass lapped and polished to be extremely flat on one or both sides, usually within a few millionths of an inch (about 25 nanometres). They are used with a monochromatic light to determine the flatness of other optical surfaces by interference. When an optical flat is placed on another surface and illuminated, the light waves reflect off both the bottom surface of the flat and the surface it is resting on. This causes a phenomenon similar to thin-film interference. The reflected waves interfere, creating a pattern of interference fringes visible as light and dark bands. The spacing between the fringes is smaller where the gap is changing more rapidly, indicating a departure from flatness in one of the two surfaces, in a similar way to the contour lines on a map. A flat surface is indicated by a pattern of straight, parallel fringes with equal spacing, while other patterns indicate uneven surfaces. Two adjacent fringes indicate a difference in elevation of one-half wavelength of the light used, so by counting the fringes differences in elevation of the surface can be measured to millionths of an inch. Usually only one of the two surfaces is made optically flat to the specified tolerance, and this surface is indicated by an arrow on the edge of the glass. Optical flats are sometimes given an optical coating and used as precision mirrors for special purposes, such as in a Fabry–Pérot interferometer or laser cavity. Optical flats have uses in spectrophotometry as well. ==Flatness testing==
An optical flat is usually placed upon a flat surface to be tested. If the surface is clean and reflective enough, rainbow colored bands of interference fringes will form when the test piece is illuminated with white light. However, if a monochromatic light is used to illuminate the work piece, such as helium, low-pressure sodium, or a laser, then a series of dark and light interference fringes will form. These interference fringes determine the flatness of the work piece, relative to the optical flat, to within a fraction of the wavelength of the light. If both surfaces are perfectly the same flatness and parallel to each other, no interference fringes will form. However, there is usually some air trapped between the surfaces. If the surfaces are flat, but a tiny optical wedge of air exists between them, then straight, parallel interference fringes will form, indicating the angle of the wedge (i.e.: more, thinner fringes indicate a steeper wedge while fewer but wider fringes indicate less of a wedge). The shape of the fringes also indicate the shape of the test surface, because fringes with a bend, a contour, or rings indicate high and low points on the surface, such as rounded edges, hills or valleys, or convex and concave surfaces.〔''Metrology & Measurement'' by Bewoor -- McGraw-Hill 2009 Page 224--230〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「optical flat」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|